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Solutions of (7), and (4) yields Solution of (13) following [12], and using (4)
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A= N Equations that give the value of an arbitrary complex imped-
& X \2 ance transformed through a length of dissipationless, nonuni-
1- (T) form line with an exponential, a cosine-squared and a parabolic
¢ taper were derived. The results should be useful in solving
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V. PARABOLIC TAPER

In this section input impedance Z;, of a parabolic tapered
transmission line terminated in load Z, is presented. Impedance
of the transmission line varies with position /
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1. INTRODUCTION

Green’s functions for the two-dimensional Helmholtz equa-
tion are used for the analysis of planar microwave circuits [1}.
Two- dimensional microstrip antennas can also be analyzed using
the Green’s function method by finding voltages at various
points along the periphery and calculating the radiation field
from this voltage distribution [2). The Green’s functions for
rectangular, circular, and triangular geometries are available 1],
[3), [4]. Annular ring structures have been proposed for use in
microstrip antennas [2], and are used in circuits like ratrace
hybrids. The circular and annular sectors are encountered in
microstrip bends as shown in Fig. 1, and their characterizations
are needed for analyzing these bends accurately. Also, the char-
acterization of an annular sector can be used to analyze accu-
rately a tapered line segment, as shown in Fig. 2. However, the
Green’s functions for these geometries have not been reported so
far. This article describes the development of Green’s functions
for annular rings and circular and annular sectors for which the
sector angle is 180° /n, where » is any positive integer.

II. PLANAR CIRCUITS

For planar circuits (Fig. 3), the Green’s function G is given [1]

by the solution of
(V3 +k?)G= —jopd §(F~7) 1)

with

9G

3, =0 2
where n is the outward unit normal at any point on the periph-
ery. In (1) above the time dependence of exp(—jwt) is assumed
for all fields on the planar circuit.

The Green’s function for any geometry can be obtained if the
complete set of mutually orthogonal eigenfunctions for the given
boundary conditions is known [5). If ¢, (7) represent the normal-
ized eigenunctions, then the Green’s function can be expanded
_ in terms of the eigenfunctions as

G(Flr)=jondS, HIT)

K2-k2 @

where k2 are the eigenvalues which satisfy
Vi kY, =0 @

and the superscript * denotes complex conjugate. For lossless
circuits i, are real and complex conjugate is not needed in (3).
The Green’s functions given by (3) contain an intrinsic singu-
larity at F=F, but this singularity does not interfere with the
determination of impedance matrices.

Solution of (1) gives Green’s functions for both stripline type
and microstrip type planar circuits shown in Fig. 3(a) and (b),
respectively. In (2) a magnetic wall has been assumed at the
periphery. The correction for fringing field would be different
for stripline type and microstrip type planar circuits but with the
magnetic wall assumed at the periphery the Green’s functions
are valid for both types of circuits. .

III. CIRCULAR SECTORS

For the circular sector shown in Fig. 4, the set of functions
which satisfy the boundary conditions is given as

Jur(0,9)=J,(k,,,p)cos v (5a)

where
(5b)

y=nu/a
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Fig. 1. Use of circular and annular sectors in stripline /microstrip bends.
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Fig. 2. A tapered line section modeled by an annular sector.
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Fig. 4. A circular sector.
and k,,, are chosen to satisfy
Ty (Kmya)=0. ©

In above, the subscript m is used to denote the mth root of (6),
and n could be any nonnegative integer. In addition, m can take
the value zero for n=0. This corresponds to &,,, =0 and implies
that the function has a value of unity throughout the sector. The
set of functions given by (5) are, in general, not orthogonal to
each other. The functions are orthogonal if, and only if, » is an
integer which implies that « is an integral multiple of a.

Let us consider the case for which a= /I, where / is a positive
integer. The set of functions discussed above are mutually or-
thogonal since » takes only integral values. To obtain the Green'’s
function using (3), these eigenfunctions must be normalized over
the region of the sector. We have

az/ 2,
else

if m=n,=0
$[a* = (n/kun,) | 72 (Kin )
Q)

where n; =nl, and denotes that » takes only integral values.

a
j; T2 (Kmn,p) do=
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Fig. 5.

An annular ring.

Using the normalization values given by (7), and those for
cos(n;¢), the Green’s function can be written as

where the eigenvalues k,,, are obtained from
Ji(kmn@) _ Jalkimnb)
Ny(kmpa)  Ny(kpnb)’

As in (6), in the above equation also, n takes nonnegative
integral values and m takes positive integral values. In addition
m can take the value zero for n=0, which corresponds to a unity
value throughout the region and k,,, =0.

To obtain the Green’s function using (3), the eigenfunctions
described by (11) are normalized. We use

(12)
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The angle of the sector « equals #/!/, and n;,=nl. The eigen- and usual normalizing relations for cosn¢ and sinn¢. The
values k,z,,,,l are given by Green’s function for the annular ring can now be written as
= d & d 2qudan(P0)F n(p)COS[n(¢—¢o)
G(’|’o)=;,—°——‘_w ) 2 - = - ] 4
€T - n=0m=1 n 2 n 2
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Jn(Kmn,a)=0 (9) where F,,,(p) is defined as
and an(p)-_'_Nr:(kmna)"n(kmnp)_J;:(kmna)Nn(kmnp) (15)
2, ifn;=0 and k,,, are chosen to satisfy (12). To use this Green’s function
€, = { L ifn>0. (10)  for analyzing an annular ring, (12) has to be solved repeatedly to

For /=1, when the sector reduces to a semicircle the Green’s
function is same as the even mode Green’s function of a circle,
Thus the Green’s function given by (8) is consistent with the
Green’s function for a circle [3].

IV. ANNULAR RINGS

For the annular ring structure shown in Fig. 5, the set of
mutually orthogonal eigenfunctions which satisfy the boundary
condition (3), on the periphery is given by

Jun( 05 0)=[N;(Kun@) S KpnnP)
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an
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obtain k,,,’s.

V. ANNULAR SECTORS

The Green’s functions for annular sectors (shown in Fig. 6)
can be obtained in the same way as for circular sectors. The set
of functions which satisfy the boundary conditions is given by

S, 0) =[N (kpny@) (K pr,p)
~Jy(kmy@)N,(Kp,,p)]cosvd  (16)
where v=nn/a, and k,,, satisfy
k@) _ Ty(kipb)
N/ (km,a) N;(ky,b)’

a7
These functions are mutually orthogonal if, and only if, a==/1,

where [ is a positive integer. The Green’s function can now be
written as

(18)
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Fig. 6. An annular sector.

The angle of the sector is a=#//, and n;=nl. The function
F,.,(p) is given by (15) and k,,,,, are obtained by solving (17). It
can be seen that this Green’s function is consistent with the
Green’s function for the annular ring in the same way as the
Green’s function for a circular sector is with that of a circle.

Using the Green’s functions given by (8), (14), and (18), the
Green’s function technique of analyzing planar circuits and
microstrip antennas can be extended to circuits incorporating
circular sectors, annular rings and annular sectors. These Green’s
functions are valid both for triplate stripline type circuits and for
open microstrip type circuits.
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I. INTRODUCTION

Two-dimensional microwave planar circuits have been pro-
posed for use in microwave integrated circuits [1]. One of the
methods, for analyzing planar components, involves determina-
tion of Z-matrix of the component using Green’s functions. The
Green’s functions are available for only a few regular shapes.
Analysis of other shapes is normally done by segmenting these
into shapes for which the Green’s functions are known. The
Segmentation Method [2], [3] uses this approach and combines
the S-matrices of the individual components to obtain overall

-S-matrix. A formulation for combining segments to form 2-port

and 4-port circuits is given in [2], [3] and could be extended to
any general n-port network.

In this method a considerable effort is spent in computing
S-matrices for each of the segments. These matrices are then
combined to obtain the overall S-matrix. Considerable reduction
in computational effort can be achieved if Z-matrices of individ-
ual components are combined to give the overall Z-matrix ftom
which the overall network scattering matrix may be determined.
A segmentation method that combines Z-matrices of the seg-
ments is described in this article.

II. SEGMENTATION USING S-MATRICES

In the segmentation method using S-matrices, we proceed as
follows. The S-matrices for the individual segments are put
together as [4]

b S, S.|la
AR H M
b, Scp S IL @

where @, b, and @,, b, are the normalized wave variables at the
p external and ¢ internal connected ports. The interconnection
constraints are given as

b.=Ta, @
where T is the connection matrix. The overall S-matrix is ob-
tained as

5 =8,;+%(F-5.) lscp' )

The solution of (3) requires inversion of a matrix of order
equal to the number of interconnected ports. Let us consider an
example shown in Fig. 1 to illustrate the total computational
effort needed in the segmentation method. This network is a
planar circuit version of a compensated in-line power divider [5].
Segment B, and C; and C, parts of segment C are quarter-wave
transformers with characteristic impedances equal to Z,/(2'/4)
and (2'/4)Z,, respectively. Segments 4, D, and E are portions of
outgoing transmission lines (characteristic impedance Z,). These
three segments are considered as planar components in order to
take into account any higher order modes that may be excited
by the discontinuities present at the ends of three transformers.
For better accuracy, each external port is divided into six sub-
ports for obtaining the Z-matrix. The six subports are combined
together using ideal six-way power dividers (not shown in the
figure) at each external port [3]. To obtain S-matrices of individ-
ual segments, five complex matrices, three of order 12 and one
cach of order 14 and 20, are to be inverted. The number of
interconnections in the network is now 44 and so a complex
matrix of order 88 has to be inverted to obtain the overall
scattering matrix.
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