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Solutions of (7), and (4) yields

where

~c =hh(zl/z2) .

IV. COSINB-SQUARED TAPERED LJNE

In this case impedance of the transmission line varies with

position also, and at a distance 1 from the load

Z=acos2 bl (9)

when

1=0, Z(0)=.l =a

l= L, Z(L)= Z2=Z1cos2bL

From (5) and (9)

d2u
—+(–2btanbl)$ +~2u=0.
d12

Solution of (10) by following [12], and using (4)

“1 ‘-

–j+ tan bl.

V. PARABOLIC TAPER

(10)

Solution of (13) following [12], and using (4)

Zm (Za -jZ, ~+tanfil
@ ) b

—.
z(1)

( )

+j—.
~tanfil+ 1 Z, +jZatan~I pa
ab

VI. CONCLUSIONS

Equations that give the value of an arbitrary complex imped-
ance transformed through a length of dissipationless, nonuni-
form line with an exponential, a cosine-squared and a parabolic
taper were derived. The results should be useful in solving
impedance matching problems in microwave circuits.
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In this section input impedance .ti of a parabolic tapered

transmission line terminated in load Z= is presented. Impedance

of the transmission line varies with position 1

Z=(a+bl)2 (12)

when I= O

Z(0)= Z1=a2

when 1= L

Z(L)= Z2=(a+bL)2.

Therefore, b=(~ ~ T ~ )/L. From (5) and (12)

dzu + 2b du

()
—— — +pu=od
dlz a+bI dl

(13)

Lcmgrnaos, Green, 1958, pp. 114– 117.
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I. INTRODUCTION

Green’s functions for the two-dimensional Helmholtz equa-

tion are used for the analysis of planar microwave circuits [1].

Two- dimensioned microstrip antemas can also be analyzed using

the Green’s function method by finding voltages at various

points along the periphery and calculating the radiation field

from this voltage distribution [2]. The Green’s functions for

rectangular, circular, and triangular geometries are available [1],

[3], [4]. Annular ring structures have been proposed for use in

microstrip antennas [2], and are used in circuits like ratrace

hybrids. The circular and annular sectors are encountered in

microstrip bends as shown in Fig. 1, and their characterizations

are needed for analyzing these bends accurately. Also, the char-

acterization of an annular sector can be used to analyze accu-

rately a tapered line segment, as shown in Fig. 2. However, the

Green’s functions for these geometries have not been reported so

far. This article describes the development of Green’s functions

for annular rings and circular and amukr sectors for which the

sector angle is 180° /n, where n is any-positive integer.

II. PLANAR CIRCUITS

For planar circuits (Fig. 3), the Green’s function G is given [1]

by the solution of

(V; +k2)G= -jUpd8(&-TO) (1)

with

ac
X“”

(2)

where n is the outward unit normal at any point on the periph-

ery. In (1) above the time dependence of exp( -j@t) is assumed
for all fields on the planar circuit.

The Green’s function for any geometry can be obtained if the

complete set of mutually orthogonal eigenfunctions for the given

boundary conditions is known [5]. If +,(7) represent the normal-

ized eigenunctions, then the Green’s function can be expanded

in terms of the eigenfunctions as

(3)

where k: are the eigenvalues which satisfy

V~y. +k;ij. =0 (4)

and the superscript * denotes complex conjugate. For lossless
CirCUA +n are real and complex conjugate is not needed in (3).

The Green’s functions given by (3) contain an intrinsic singu-

larity at ~=~o but this singularity does not interfere with the

determination of impedance matrices.

8olution of (1) gives Green’s functions for both stripline type

and microstrip type planar circuits shown in Fig. 3(a) and (b),

respectively. In (2) a magnetic wall has been assumed at the

periphery. The correction for fringing field would be different

for stripline type and microstrip type planar circuits but with the

magnetic wall’ assumed at the periphery the Green’s functions

are valid for both types of circuits.

III. CrRCULARSECTORS

For the circular sector shown in Fig. 4, the set of functions
which satisfy the boundaty conditions is given as

fm.(P$ +)= J7(%P)c@ W (5a)

where

y=nnla (5b)

#

,I

Fig. 1. Use of circular and annular sectors in stripfine/microstrip bends.

Fig. 2. A tapered line section modeled by an annular sector.
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Fig. 3. MicroStrip type and stripline type planar circuits
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Fig. 4. A circtdra sector.

and km. are chosen to satisfy

J;(km,a)=O. (6)

In above, the subscript m is used to denote the mth root of (6),
and n wuld be any nonnegative integer. In addition, m can take
the value zero for n= O. This corresponds to km, = O and implies

that the function has a value of unity throughout the sector. The

set of functions given by (5) are, in general, not orthogonal to

each other. The functions are orthogonal if, and only if, v is an

integer which implies that r is an integral multiple of a.

Let us consider the case for which a = r/1, where 1 is a positive

integer. The set of functions discussed above are mutually or-

thogonal since v takes only integral values. To obtain the Green’s

function using (3), these eigenfunctions must be normalized over

the region of the sector. We have

(7)

where qi = nl, and denotes that v takes only integral values.
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Fig. 5. An annular ring.

Using the normalization vrdues given by (7), and those for

COS(ni~), the Green’s function can be written as

m 4ti@Ptin,(kmn,PO)Jn,(kmn,P)cos ‘iOOcOs ‘i++s2
n-O m=l ( )●n 7r az - g (k:n, -I+r;(kmn,a)

mn,

(8)

The angle of the sector a equals ril, and ni = nl. The eigen-

values k~ni are given by

where the eigenvalues kmn are obtained from

(12)

As in (6), in the above equation also, n takes nomegative

integral values and m takes positive integral values. In addition

m can take the value zero for n = O, which corresponds to a unity

value throughout the region and kmn = O.

To obtain the Green’s function using (3), the eigenfunctions
described by(11) are normalized. We use

~bp[N;(kmna)J.(kmnp) -J;(kmna)Nn(km.p)]2dp
u

[( )=;b2– $- {N~(kmna)Jn(kmnb)

mn

–J;(km.a)NJk#)}2

()—a2- # {Ni(k~.a)Uk~~a)

-Ji(k~~a~~Jk~~a)}2] (13)

and usual normalizing relations for cos n+ and sin n ~. The

Green’s function for the annular ring can now be written as

d 2.jLOpdFmn(po)q(p )cos[n(@–@O)l
G(?IPO)=

‘55 ‘nT[(b2-:)’Fmn(b)’2-(a2’14)jti67r(b2–az) .=0 m-l

.J~,(k~”,a)=O (9) where F~.(P) is defined as

and ~~~(p)=N;(k~~a)J~ (k*~p)–J;(k~~a) Nn(kMnp) (15)

(2, ifni=O and km ~ are chosen to satisfy (12). To use this Green’s function

%, = 1, ifni>O.
(10) for analyzing an annular ring, (12) has to be solved repeatedly to

obtain k~n’s.

For 1=1, when the sector reduces to a semicircle the Green’s V. ~.4R SEcroRs
function is same as the even mode Green’s function of a circle.

Thus the Green’s function given by (8) is consistent with the The Green’s functions for annular sectors (shown in Fig. 6)

Green’s function for a circle [3]. can be obtained in the same way as for circular sectors. The set
of functions which satisfy the boundary conditions is given by

IV. AmULAR RINGS ~~r(p>@)=[Ni(k~,a)J,(k~vP)

For the annular ring structure shown in Fig. 5, the set of –l!(k~,a)N,(k~, p)]cos v+ (16)
mutually orthogonal eigenfunctions which satisfy the boundary
condition (3), on the periphery is given by where v= n r/a, and kmv satisfy

J~(k~,a) J;(knwb)

f~.(p,q)=[M(k~”a)JJk~n~) Xf(km,a) = iV;(kmVb) “
(17)

–J;(k~na)A’Jk~.~)] { ~~~~ (11) These functions are mutually orthogonal if, and only if, a =TT/1,

where 1 is a positive integer. The Green’s function ean now be

written as

21d m m 4@~dFmn,(po)Fmn,( p)cos ni+oms niq
G(FIFO)=

jGJC7r(b2 –az)

‘202’’m[(b2-*)FJ(b)-(a2-&’18)
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Fig. 6. An annular sector.

The angle of the sector is a =r/1, and ni = nl. The function

~~n~p) is given by (15) and k~n, are obtained by solving (17). It
can be seen that this Green’s function is consistent with the
Green’s function for the annular ring in the same way as the
Green’s function for a circular sector is with that of a circle.

Using the Green’s functions given by (8), (14), and (18), the
Green’s function technique of analyzing planar circuits and
microstrip antennas can be extended to circuits incorporating
circular sectors, amular rings and annular sectors. These Green’s
functions are valid both for triplate stnpline type circuits and for
open microstrip type circuits.
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I. INTRODUCTION

Two-dimen8iontd microwave planar circuits have been pro-

posed for use in microwave integrated circuits [1]. Gne of the

methods, for analyzing planar components, involves determina-

tion of Z-matrix of the component using Green’s functions. The

Green’s functions are available for only a few regular shapes.

Analysis of other shapes is normally done by segmenting these

into shapes for which the Green’s functions are known. The

Segmentation Method [2], [3] uses this approach and combines

the ~-matrices of the individual components to obtain overall

&matrix. A formulation for combining segments to form 2-port

and 4-port circuits is given in [2], [3] and could be extended to

any general n-port netxvork.

In this method a considerable effort is spent in computing

~-matrices for each of the segments. These matrices are then

combmed to obtain the overall &mat& Considerable reduction

in computational effort can be achieved if Z-matrices of individ-

ual components are combined to give the overall Z-matrix from

which the overall network scattering matrix may be determined.

A segmentation method that combines Z-matrices of the seg-

ments is described in this article.

II. SEGMSNTAmON USJNG ~-MATRICES

In the segmentation method using S-matrices, we proceed as

follows. The S-matrices for the individual segments are put

together as [4]

(1)

where iiP 5P and iiC, ~Care the normalized wave variables at the
p external and c internal connected ports. The interconnection
constraints are given a8

SC=~~c (2)

where ~ is the connection matrix. The overall S-matrix is ob-
tained as

S* =$P +$c(f–see)-l&. (3)

The solution of (3) requires inversion of a matrix of order
equaf to the number of interconnected ports. Let us consider an
example shown in Fig. 1 to illustrate the total computational
effort needed in the segmentation method, This network is a
planar circuit version of a compensated in-line power divider [5].
Segment B, and Cl and C2 parts of segment c are quarter-wave

trrtnsfonners with characteristic impedances equal to ZO/(21i4)

and (2*14)Zo, respectively. Segments ~, D, and E are portions of

outgoing transmission lines (characteristic impedance Zo). These
three segments are considered as planar components in order to
take into account any higher order modes that may be excited
by the discontinuities present at the ends of three trartsformers.
For better accuracy, each external port is divided into six sub-
ports for obtaining the Z-matrix. The six subports are combined
together using ideal six-way power dividers (not shown in the
figure) at each external port [3]. To obtain S-matrices of individ-
ual segments, five complex matrices, three of order 12 and one
each of order 14 and 20, are to be inverted. The number of
interconnections in the network is now 44 and so a complex
matrix of order 88 has to be inverted to obtain the overall
scattering matrix.
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